Interleukin-6 trans-signalling differentially regulates proliferation, migration, adhesion and maspin expression in human prostate cancer cells
نویسندگان
چکیده
Interleukin-6 (IL-6) is suggested to have a pathogenic role in the progression of prostate cancer (PC), therefore representing an attractive target for new therapies. However, due to the pleiotropy of this cytokine, targeting IL-6 results in different and unpredictable responses. In order to better understand the mechanisms underlying the different responses to the cytokine, we focused our attention on IL-6 receptors (IL-6Rs) that represent the first element in the cascade of cytokine-activated signalling pathways. IL-6 signal transduction may indeed occur through the membrane IL-6R (classical signalling) and/or through the less studied soluble IL-6R (sIL-6R; IL-6 trans-signalling (IL-6TS)). We provide the first evidence how responses to IL-6 may depend on the different content of IL-6Rs in PC. In particular, the studies of (3)H-thymidine incorporation and exploitation of different approaches (i.e. activation or inhibition of IL-6TS in sIL-6R-negative and -positive cell lines and transfection of IL-6R siRNA) allowed us to demonstrate that IL-6TS specifically accounts for an anti-proliferative effect of the cytokine in three PC cell lines that are known to respond differently to IL-6. Additionally, by applying migration-, scratch- and adhesion assays, we show that IL-6TS increases motility and migration and decreases adhesion of prostate cells facilitating thereby processes that determine metastasis initiation and spread. Finally, by western analyses, we uncovered an IL-6- and sIL-6R-dependent downregulation of the tumour suppressor maspin. Collectively, these data suggest that selective targeting of IL-6TS might allow to refine the currently available experimental anti-IL-6 therapies against PC.
منابع مشابه
Effect of Exposure to Quran Recitation on Cell Viability, Cell Migration, and BCL2L12 Gene Expression of Human Prostate Adenocarcinoma Cell Line in Culture
Background and Objectives: Prostate cancer is the third most important cause of cancer deaths and one of the most common cancers in the world. Given the limited knowledge on environmental sounds and their effects, the important role of sounds is neglected in every culture across the world. The aim of this study was to investigate the impact of Quran recitation on prostate cancer cell line (PC-3...
متن کاملHaploinsufficiency of the maspin tumor suppressor gene leads to hyperplastic lesions in prostate.
Maspin is a key tumor suppressor gene in prostate and breast cancers with diverse biological functions. However, how maspin regulates prostate tumor progression is not fully understood. In this study, we have used maspin heterozygous knockout mice to determine the effect of maspin haploinsufficiency on prostate development and tumor progression. We report that loss of one copy of maspin gene in...
متن کاملNDRG2 Regulates the Expression of Genes Involved in Epithelial Mesenchymal Transition of Prostate Cancer Cells
Background: Metastasis is the main cause of prostate cancer (PCa) death. The inhibitory effect of N-myc downstream-regulated gene 2 (NDRG2) on the invasiveness properties of PCa cells has been demonstrated previously. However, its underlying mechanisms have not yet been investigated. The present study aimed to investigate the effects of NDRG2 overexpression on the expression of genes involved i...
متن کاملEffect of Silibinin on Maspin and ERα Gene Expression in MCF-7 Human Breast Cancer Cell Line
Background and objective: According to reports, a serine protease inhibitor (Maspin) suppresses metastasis, invasion and angiogenesis in breast and prostate cancers. Silibinin is a natural polyphenolic flavonoid with anti-cancer activity. We assessed the effects of silibinin on cell viability, maspin and ERα gene expression in MCF-7 cell line. <s...
متن کاملRadiosensitizing effects of Sestrin2 in PC3 prostate cancer cells
Objective(s): The stress-responsive genes of Sestrin family are recognized as new tumor suppressor genes in breast carcinoma, however, the function of Sestrin family in human prostate cancer is not clear. Ionizing radiation (IR) is known to induce Sestrin gene expression in breast cancer cells. However, the response of Sestrin to IR has not been reported in PC3 prostate cancer cells. Materials ...
متن کامل